thermoscientific

WormHole characterization

1. Introduction

This tutorial is part of the PerGeos Training course, and will detail how to characterize a wormhole in a CT core sample.

Depending on the acidization of the rock sample, defining a recipe with the entire workflow (pre-processing, wormhole segmentation, wormhole characterization) will allow us to simply re-apply the recipe when changing the input data.

The wormhole segmentation is based on a Watershed transform, thus can be easily automated with limited user interaction.

Figure 2 WormHole sample

Figure 1 WormHole in 3D

thermoscientific

2. Playing the recipe

The <WormHole_segmentation> recipe, responsible of the wormhole extraction, contains the following steps :

Crop Core

This step will re-center and re-align the core sample

Figure 3 Cropped Core sample

Figure 4 Crop Core GUI

Beam Hardening Correction

This step will correct the beam hardening artifact of the CT sample, thus easing the segmentation of the wormhole.

Figure 4 Beam Hardening Corrected Core

thermoscientific

Wormhole segmentation

The WormHole segmentation is a classical pore space segmentation based on a Watershed Transform (markers with threshold + topHat) applied on the 3D gradient image.

Remaining unconnected pores are removed by applying a Connected Pore Space module.

Figure 6 Wormhole (Threshold + TopHat) and rock markers (Threshold)

Figure 5 WormHole after the Watershed (XY)

Figure 7 Wormhole after the Watershed (XZ)

Mask creation

The bulk volume of the core is also computed in the recipe, and extracted as an additional output (new feature of PerGeos 1.7).

Figure 8 Portion of the recipe computing the Mask

It is computed with a high intensity Thresholding followed by a Fill Holes operation.

3. WormHole analysis

The wormhole fraction is computed with volume fraction.

Figure 10 Volume Fraction module

Figure 9 Volume fraction result (4.7%)

Further analysis possibilities include:

- Absolute permeability
- Separation into individual pore bodies
- Pore Network Modeling
- Detection of main and secondary branches (morphological operations or Pore Network Model filtering)
 Morphological recipe available: <mainBranchRecipe_morpho>
 - PNM recipe : <mainBranchRecipe_PNM>
- Branch size analysis

Figure 11 Pore Network Model

Figure 12 Main and secondary branches

