Catalog Number D7137

Product Name dextran, fluorescein, 2,000,000 MW, anionic, lysine fixable

Appearanceorange solidLot Number1963926

Small variation in color is possible, but should not affect product performance.

	LOT DATA	SPECIFICATION
ABSORPTION		
Maximum	496 nm	495 ± 5 nm
Degree of Labeling ¹	109	90 – 140
ASSAY		
Lysine Determination ²	1080	≥ 150
FLUORESCENCE		
Emission Maximum	521 nm	524 ± 5 nm
Relative Quantum Yield ³	0.7	≥ 0.4
PURITY ⁴		
TLC	meets specification	negligible or no free dye detected

- 1. Moles of dye per mole of dextran, determined using an ε of 68,000 cm⁻¹M⁻¹ at the absorption maximum.
- 2. Moles of lysines per mole of dextran.
- 3. Quantum yield determined relative to fluorescein at pH 8.0.
- 4. Solvent: 70% chloroform/25% methanol/5% acetic acid.

Camelsmith

Rachel Smith, Quality Assurance Manager

23-Jan-2017

Life Technologies Corporation, on behalf of its Invitrogen business, Molecular Probes® labeling and detection technologies, certifies on the date above that this is an accurate record of the analysis of the subject lot and that the data conform to the specifications in effect for this product at the time of analysis.