Invitrogen[™] Collibri[™] Library Amplification Master Mix with Primer Mix invitrogen

USEF	RGUIDE		Pub. No. MAN0017582	Rev. B
P	Package contents	Catalog No. A38540050 A38540250	Size 50 rxns (with primer mix) 250 rxns (with primer mix)	<i>i</i> Kit contents
	Storage conditions	Store all conten up to 1 month. has been observ	ts at –20°C until the expiration of No negative effect on master mi ved for up to 30 freeze/thaw cyc	late or at 4°C for x performance :les.
	Related products	Go to thermofis	her.com/collibri to view related	l products.

- Invitrogen[™] Collibri[™] Library Amplification Master Mix (2X) is a ready-to-use solution designed for the amplification of next generation sequencing (NGS) libraries compatible with Illumina[™] sequencing platforms. The master mix includes the Platinum[™] SuperFi[™] DNA Polymerase in combination with a proprietary reaction buffer that contains all the necessary components for efficient and uniform library amplification regardless of GC content, helping improve coverage across GC- and AT-rich sequences and other complex regions.
- Platinum[™] SuperFi[™] DNA Polymerase has both 5' to 3' polymerase and 3' to 5' exonuclease (proofreading) activities, but lacks the 5' to 3' exonuclease activity. Exceptionally strong proofreading activity ensures amplification of NGS libraries with supreme sequence accuracy.
- The Collibri[™] Library Amplification Master Mix is supplemented with an inert blue dye. The master mix is supplied with a 10X Primer Mix that targets the P5 and P7 regions of Illumina[™] adapters and contains a yellow dye. Mixing both components in a PCR reaction turns final solution green. This provides a visual aid when pipetting and decreases the risk of pipetting errors during reaction setup.
- Platinum[™] hot-start technology inhibits DNA polymerase activity at ambient temperatures, allowing room temperature reaction setup and storage of pre-assembled PCR reactions for up to 24 hours prior to the PCR. Enzyme activity is restored after the initial denaturation step.

Important auidelines

Online

Click here for important library amplification guidelines.

Visit our product page for additional information and protocols. For support, visit thermofisher.com/support. resources

Master mix characteristics

Concentration:	2X
Enzyme:	Platinum [™] SuperFi [™] DNA Polymerase
Activities:	5' to 3' polymerase, 3' to 5' exonuclease (proofreading)
Hot-start:	Antibody
Fidelity vs. <i>Taq</i> :	>300X

PCR setup

Component	50-µL rxn	Final conc.
2X Library Amplification Master Mix ^[1]	25 µL	1X
10 µM Primer Mix ^[2]	5–10 µL	1–2 µM
Adapter-ligated DNA	15–20 μL	varies

^[1] Provides MgCl₂ at a final concentration of 2 mM in the reaction.

^[2] Use the Primer Mix supplied with the master mix or use another suitable library amplification primer mix. The recommended final concentration of each primer in the amplification reaction is $1-2 \mu M$ (see "Optimization strategies" for more information).

PCR protocol

See page 2 to prepare and run your PCR.

Optimization strategies

Click here for guidelines to optimize your library amplification.

Troubleshooting

Click here for guidelines to troubleshoot your library amplification.

Purchaser notification

Click here for Limited warranty, Disclaimer, and Licensing information.

For Research Use Only. Not for use in diagnostic procedures.

The example PCR procedure below shows appropriate volumes for a single **50-µL** reaction. For multiple reactions, prepare a master mix of components common to all reactions to minimize pipetting error, then dispense appropriate volumes into each 0.2–0.5-mL PCR tube prior to adding template DNA and primers.

	Steps	Action	Procedure details				
1		Thaw reagents	Thaw, mix, and briefly centrifuge each component before use. Avoid generating bubbles when mixing the Master Mix.				
			a. Add the following components to each PCR tube.				
		Prepare PCR reaction mix	Component	Volume	Final conc.		
			2X Library Amplification M	25 µL	1X		
			10 µM Primer Mix ^[2]	5–10 µL	1–2 µM		
			Adapter-ligated DNA		15–20 μL	varies	
			Total volume:	50 uL			
2			^[1] Provides MgCL at a final cor	centration of 2 mM in the reaction	n		
			 ^[2] Use the Primer Mix supplied with the master mix or use another suitable library amplification primer mix. The recommended final concentration of each primer in the amplification reaction is 1–2 μM (see "Optimization strategies", page 1, for more information). b. Mix and then briefly centrifuge the components. Note: Collibri™ Library Amplification Master Mix is supplemented with a blue dye and the Primer Mix contains a yellow dye. Mixing both components in a PCR reaction turns the solution green. This provides a visual aid when pipetting and decreases the risk of pipetting errors during reaction setup. 				
		Determine the required number of PCR cycles	Note: The number of PCR cycl DNA. The actual number of PC Add additional cycles to ampl	es recommended here are opti CR cycles may differ dependin ify libraries prepared from FFF	mized for NGS libraries t g on the library prep reag PE DNA or other challeng	o acquire at least 20 ents, protocol, and i ing samples.) fmol of library nput DNA quality.
			Input DNA ^[1]	PCR cycle number	Input RNA ^{[1}	PCR cycle	number
			250 ng	1–2	25–50 ng	8–1	0
			100 ng	2-4	10–25 ng	9–1	.1
			50 ng	4–7	5–9 ng	10-1	12
3			25 ng	5–8	1–4 ng	12–1	14
			10 ng	6–9	^[1] The rRNA-deplet	ed or poly(A)-enriched	l RNA input
	-		5 ng	7–10	amount to Library Prep kit.		
			1 ng	10–13			
			0.1 ng	13–15			
			^[1] The DNA input amour	nt to Library Prep kit.			
			1				

	Steps	Action	Procedure details				
4		Incubate reactions in a thermal cycler	PCR cycles	Step	Temperature	Time	
			1	Initial denaturation	98°C	30 seconds	
			1-15[1]	Denature	98°C	15 seconds	
				Anneal ^[2]	60°C	30 seconds	
				Extend	72°C	30 seconds	
			1	Final extension	72°C	1 minute	
					4°C	hold	
			 ¹ See "Determine the number of PCR cycles", page 2, for the required number of PCR cycles. ² 60°C annealing temperature is recommended for the Primer Mix supplied with the kit. Optimization of annealing temperature may be required for different user-supplied adapters and primers. Note that the annealing temperature for Platinum[™] SuperFi[™] DNA Polymerase is typically higher than for other DNA polymerases. To determine the optimal annealing conditions, use the T_m calculator on our website at thermofisher.com/tmcalculator as a starting point. Note: See "Optimization strategies", page 1, for guidelines to optimize cycling conditions. 				
5	G C	Analyze by sequencing	After amplification, use your library immediately for post-PCR cleanup and sequencing, or store it at –20°C.				

