invitrogen

BioPrime[®] Total FFPE Genomic Labeling System

For labeling DNA purified from formalin-fixed, paraffin-embedded tissue samples

Catalog nos. A10965-010 and A10965-011

Revision date: 23 July 2009 Manual part no. 100005223

MAN0000410

User Manual

Table of Contents

Kit Contents and Storage	v
Overview	1
Methods	4
Before Starting	4
Labeling	5
Purification	7
Assessing the Efficiency of the Labeling Procedure	
Expected Results	9
Troubleshooting	10
Appendix	11
Technical Support	11
Additional Products	13
References	14

Kit Contents and Storage

Kit S Moc	Sizes and Iules	Catalog no. # A10965-010 1 A10965-011 30	orts the following k <u>of Reactions</u> 0 (5 per dye) La 0 (15 per dye) La	it configurations. <u>Modules</u> beling and Purification beling and Purification	
Shij Stoi	oping and rage	The BioPrime [®] Tota dry ice and should Mixes may be store –20°C long-term).	al FFPE Labeling N be stored at –20°C ed at +4°C for up to	fodule is shipped on . The 10X Nucleotide o 4 weeks (store at	
		The Purification Module is shipped and should be stored at room temperature.			
Lab Moc	eling Iule	The following com Labeling Module s Nucleotide Mixes r (store at -20°C long	ponents in the Bio hould be stored at nay be stored at +4 z-term).	Prime [®] Total FFPE –20°C. The 10X I°C for up to 4 weeks	
	Component		10-reaction kit	30-reaction kits	
	Alexa Fluor® 3 Nucleotide M	3 FFPE 10X ix	25 µl	3 × 25 µl	
	Alexa Fluor [®] 5 Nucleotide M	5 FFPE 10X ix	25 µl	3 × 25 µl	
	Exo- Klenow Fragment, 40 U/µl		30 µl	3 × 30 µl	
	Stop Buffer		0.5 ml	0.5 ml	
	2.5X Random Primers Solution		0.25 ml	3×0.25 ml	

2.5X Random Primers Solution0.25 ml 3×0.25 mlControl DNA (Salmon Sperm),
(10 mg/ml)10 µl10 µlDEPC-treated water0.5 ml 2×0.5 ml

The fluorescently labeled nucleotides in the Alexa Fluor[®] FFPE 10X Nucleotide Mixes are sensitive to photobleaching. Store the mixes protected from light.

Continued on next page

Kit Contents and Storage, continued

Purification Module

The following components in the BioPrime[®] Total FFPE Purification Module should be stored at room temperature.

Component	10-reaction kit	30-reaction kit
PureLink [™] Spin Columns with Collection Tubes	11 columns/ tubes	31 columns/ tubes
Binding Buffer (B2) (combine with 100% isopropanol; see below)	9 ml	9 ml
Wash Buffer (W1) (combine with 100% ethanol; see below)	11 ml	11 ml
Elution Buffer (E1) (10 mM Tris-HCl, pH 8.5)	4 ml	4 ml
Amber Collection Tubes	12 tubes	36 tubes

Preparing Binding Buffer B2 with Isopropanol	Binding Buffer B2 supplied with the Purification Module must be mixed with 100% isopropanol prior to use. Add the amount of isopropanol below directly to the bottle of Binding Buffer B2, and mark the checkbox on the bottle to indicate that you have added the isopropanol.		
	Binding Buffer B2 100% Isopropanol Final Volume Store the buffer with isopropanol a	Amount 9 ml (entire bottle) <u>6 ml</u> 15 ml t room temperature.	
Preparing Wash Buffer W1 with Ethanol	Wash Buffer W1 supplied with the must be mixed with 100% ethanol p Add the amount of ethanol below of Wash Buffer W1, and mark the che- indicate that you have added the et	Purification Module prior to use. lirectly to the bottle of ckbox on the bottle to hanol.	
	Wash Buffer W1 100% Ethanol Final Volume Store the buffer with ethanol at roo	<u>Amount</u> 11 ml (entire bottle) <u>40 ml</u> 50 ml m temperature.	

Overview

Array comparative genomic hybridization (aCGH) is a Introduction microarray-based method for analyzing genomic DNA to detect variations in gene copy number between samples (Pollack et al., 1999; Pollack et al., 2002). In aCGH, two genomic DNA samples are labeled with different fluorophores. The samples are hybridized to a microarray and the ratio of the fluorescent intensities of the fluorophores is measured for each feature on the array (Beheshti et al., 2003; Cai et al., 2002; Snijders et al., 2001). This ratio provides a relative measure of the difference in gene copy number between the samples. The BioPrime® Total FFPE Genomic Labeling System uses a mutant form of the Klenow fragment of DNA Polymerase I (Exo- Klenow) and nucleotides labeled with two novel, application-specific dyes (Alexa Fluor® 3 and 5) to differentially label genomic DNA samples for analysis by aCGH. The BioPrime[®] Total FFPE Genomic Labeling System has been optimized for labeling DNA purified from formalinfixed, paraffin-embedded (FFPE) tissue samples. It can be used to detect differences in gene copy number from as little as 500 ng of genomic DNA from these samples (depending on sample quality). Advantages of Amplified products labeled with novel Alexa Fluor®3 and 5 dyes have greater yields and higher signal the System intensities on the array. Exo- Klenow polymerase incorporates fluorescently . modified nucleotides more effectively and provides higher yields than standard Klenow, for greater reproducibility of results. PureLink[™] purification columns are designed to effectively remove all unincorporated nucleotides for the most accurate quantitation of labeled product and reduced background on the array. Dye-specific nucleotide mixes include labeled and unlabeled nucleotides for simplified reaction setup and workflow.

• Provides a complete solution for fluorescent labeling of genomic DNA.

Overview, continued

Workflow Overview	Add the 2.5X Random Primers Solution and Alexa Fluor [®] 3 10X Nucleotide Mix or Alexa Fluor [®] 5 10X Nucleotide Mix to each reaction tube, then add the genomic DNA samples.	Primer Mix + Mix + Alexa Alexa Fluor® 3 Fluor® 5 ↓ ↓
	Heat each mixture briefly to denature the DNA, then cool to anneal the primers.	DNA 1 DNA 2 DNA 1 DNA 2
	Add Exo– Klenow, then incubate at 37°C for 2 hours to amplify and label the DNA.	Exo- Klenow
	Add Binding Buffer B1 to each labeled sample, transfer the mixture to PureLink [™] spin columns in collection tubes, and centrifuge.	Amplify and label Binding Buffer
	Add Wash Buffer W1 to each column and centrifuge.	Wash Buffer
	Transfer the spin columns to Amber Recovery Tubes, add Elution Buffer E1 to each column, and centrifuge.	Elution Buffer
	Proceed to hybridization.	Proceed to hybridization

Continued on next page

Overview, continued

Alexa Fluor [®] 3 and Alexa Fluor [®] 5	The novel, application-specific Alexa Fluor [®] 3 and A Fluor [®] 5 dyes used in the kit are compatible with co- used microarray scanners, and provide greater sign correlation (R ²) values than the spectrally similar Cy Cy [™] 5 dyes, improving the resolution of two-color at The table below shows the excitation/emission max color of each dye:			
	Dve	Excitation/Emission	Color	
	Alexa Fluor [®] 3 Alexa Fluor [®] 5	555/565 nm 650/670 nm	Pink Light blue	
Control DNA	Control DNA (Salmon Sperm DNA) is included in the kit to help determine the efficiency of the labeling procedure. Note that the degree of labeling efficiency will depend on the quality of the FFPE sample. Equations for calculating labeling efficiency are provided on page 8.			
Materials Supplied by the User	 In addition to the kit components, you should have the following items on hand before using the BioPrime® Total Genomic Labeling System. Genomic DNA purified from FFPE sample (amount is array-dependent) Vortex mixer 			
	 Microcentrifuge Heat block, air incubator, or thermocycler with heated lid 			
	• Ice			
	 1.7-ml DNase-free capped tubes or thin-walled PCR tubes 			
	Aerosol-resistant pipette tips			
	• 100% isopropanol and 100% ethanol (for preparing the purification buffers; see page vi)			
Product Qualification	The Certificate of Ar control information, <u>www.invitrogen.com</u> product lot number,	nalysis (CofA) provides of and is available on our o <u>m/support</u> and search for which is printed on the	detailed quality website. Go to or the CofA by box.	

Methods

Before Starting

Amount of Starting Material	The amount of starting material depends on the recommendations of your array manufacturer. This kit can detect differences in gene copy number from as little as 500 ng of genomic DNA from FFPE samples (depending on sample quality).
Isolating Genomic DNA	Isolate genomic DNA using a high-quality purification system that is designed for use with FFPE samples. The PureLink [™] Genomic DNA Mini Kit is a complete kit for the isolation of genomic DNA from various sample types, including FFPE tissues (see the Important note below). See page 13 for ordering information.
Q Important	If you are using the PureLink [™] Genomic DNA Mini Kit, we strongly recommend performing an <i>overnight</i> digestion step of the FFPE sample lysate with Proteinase K. The protocol in the PureLink [™] manual suggests that the sample may be digested at 50°C for 3 hours to overnight. However, we have found that digesting overnight or even longer yields optimal results.
General Handling of DNA	When handling DNA, use sterile conditions to ensure that no DNases are introduced. All equipment that comes into contact with DNA should be sterile, including pipette tips, microcentrifuge tubes, snap-cap polypropylene tubes, and pipettes. Be sure pipettor barrels are clean and treated with ethanol.
Checking DNA Quantity and Quality	Genomic DNA may be run on an agarose gel to check for quantity and quality. Bufferless E-Gel® Pre-cast Agarose Gels are available from Invitrogen for fast and easy electrophoresis. See page 13 for ordering information.
Storing DNA	After isolating the DNA, we recommend that you proceed directly to Labeling on the next page. Otherwise, store the isolated genomic DNA at +4°C.

Labeling	
Required Materials	 In addition to the components of the Labeling Module, the following materials are supplied by the user: Genomic DNA (amount is array-dependent) Vortex mixer Microcentrifuge Heat block, incubator, or thermocycler with a heated lid Ice 1.7-ml capped tubes or thin-walled PCR tubes
Q Important	Fluorescently labeled nucleotides are sensitive to photobleaching. During all steps of the procedure, be careful to minimize exposure of the 10X Nucleotide Mixes and labeled DNA to light.
Preparing the Control DNA	 The Control DNA is provided at a concentration of 10 mg/ml, and should be diluted in DEPC-treated water prior to use. To prepare 1 μg of Control DNA for labeling: 1. Dilute the Control DNA to a concentration of 1 μg/μl: Control DNA (10 mg/ml) 1 μl DEPC-treated water (provided in the kit) 9 μl Final volume 10 μl 2. Add 1 μl of the diluted Control DNA to 21 μl of water, for a final volume of 22 μl.
Incubation Methods	The incubation steps may be performed in a heat block, air incubator, or thermocycler with a heated lid. Incubate the reaction protected from light.

Continued on next page

Labeling, continued

Labeling Procedure	 If necessary, thaw the 2.5X Random Primers Solution and Alexa Fluor[®] 10X Nucleotide Mixes at room temperature. (Keep the labeled mixes protected from light.) 		lution n l from	
	2.	Briefly vortex each tube and centrifuge to collect the contents. Place the tubes on ice.		
	3.	On ice, add the following to separate DNase-free capped tubes or thin-walled PCR tubes:		
		Component 2.5X Random Primers Solution Alexa Fluor® 3 10X Nucleotide Mix Alexa Fluor® 5 10X Nucleotide Mix Genomic DNA Sample 1 Genomic DNA Sample 2 Total volume	Tube 1 20 μl 5 μl 22 μl 47 μl	<u>Tube 2</u> 20 μl 5 μl <u></u> <u>22 μl</u> 47 μl
		<i>Optional:</i> You can also prepare a conteach dye using 1 µg of Control DNA (diluted as described on the previous)	trol reactio provided s page).	n for in the kit
	4.	Gently pipet up and down to mix and incubate at 95°C, protected from light, for 5 minutes. Immediately cool on ice for 5 minutes.		
	5.	On ice, add 3 μ l of Exo– Klenow Fragment to each tube, for a final reaction volume of 50 μ l.		
	6.	Vortex tubes briefly and centrifuge to collect the contents.		
	7.	Incubate at 37°C for 2 hours in a heat block, air incubator, or thermocycler with a heated lid, protected from light.		
	8.	After incubation, if you are storing the length of time prior to purification, a Buffer to each tube to quench the read proceeding directly to purification, y step.	ne reaction dd 5 µl of action. If yc rou can ski	for any Stop ou are p this
	Pro- stor add	ceed to Purification , next page. The reed at –20°C overnight if necessary (fo ition of Stop Buffer).	eaction car llowing the	ı be e

Purification

Purification Module	In this step, you use the Purification Module provided with the system to purify the labeled DNA.		
Purification Procedure	1.	Add 200 µl of Binding Buffer B2 (prepared with isopropanol as described on page vi) to each tube from Step 8 on the previous page, and vortex to mix.	
	2.	Load each sample onto a PureLink [™] Spin Column, preinserted in a collection tube.	
	3.	Centrifuge at $10,000 \times g$ for 1 minute. Discard the flow- through and place the column back in the collection tube.	
	4.	Add 650 µl of Wash Buffer W1 (prepared with ethanol as described on page vi) to the column.	
	5.	Centrifuge at $10,000 \times g$ for 1 minute. Discard the flow- through and place the column back in the collection tube.	
	6.	Spin at maximum speed for an additional 2–3 minutes to remove any residual wash buffer. Discard the flow through.	
	7.	Place the Spin Column in a new, sterile Amber Recovery Tube (supplied in the kit).	
	8.	Add 55 μl of Elution Buffer E1 to the center of the column and incubate at room temperature for 1 minute.	
	9.	Centrifuge at maximum speed (\sim 20,000 × g) for 2 minutes. The flow-through contains the purified labeled DNA probes. (Discard the column after use.)	
	To d to t	determine the efficiency of the labeling reaction, proceed he next page.	
	For a list of array hybridization reagents available fro Invitrogen, see page 13.		

Assessing the Efficiency of the Labeling Procedure

Calculating the Results	<i>Note:</i> Labeling efficiency will depend on the quality of the FFPE sample.			
	To calculate the amount of labeled DNA using a UV/visible spectrophotometer:			
	 Transfer an appropriate volume of purified, labeled DNA from step 9, page 7, to a clean cuvette. Use an appropriate volume for your spectrophotometer. Blank the spectrophotometer using 10 mM Tris-HCl, pH 8.5. 			
	Important: The labeled DNA must be purified as described on page 7 before scanning, as any unincorporated labeled nucleotides will interfere with the detection of labeled DNA.			
	 Measure the absorbance of the sample at A₂₆₀, A₃₂₀, A₅₅₅, A₆₅₀, and A₇₅₀. Wash each cuvette thoroughly between samples. 			
	Yield:1			
	DNA (μ g) = (A ₂₆₀ -A ₃₂₀) × 50 μ g/ml × volume in ml			
	Dye Incorporation: ²			
	Alexa Fluor [®] 3 (pmole) = $(A_{555}-A_{650})/0.15 \times \text{volume in } \mu$			
	Alexa Fluor [®] 5 (pmole) = $(A_{650}-A_{750})/0.24 \times \text{volume in } \mu$			
	Degree of Labeling: ³			
	Alexa Fluor [®] 3 base/dye ratio = $((A_{260} - A_{320}) - ((A_{555} - A_{650}) \times 0.04)) \times 150,000/(A_{555} - A_{650}) \times 6,600$			
	Alexa Fluor [®] 5 base/dye ratio = $((A_{260} - A_{320}) - ((A_{650} - A_{750}) \times 0)) \times 239,000/(A_{650} - A_{750}) \times 6,600$			
	Notes:			
	¹ Subtracting A ₃₂₀ from A ₂₆₀ corrects for any silica particles that may leak from the purification columns and artificially increase the yield calculations.			
	² Subtracting A ₆₅₀ from A ₅₅₅ and A ₇₅₀ from A ₆₅₀ corrects for any fluorescent background that might artificially increase the measure of dye incorporation.			
	³ Absorbance at A_{555} has a very slight effect on the A_{260} reading, and the formula (($A_{555} - A_{650}$) × 0.04)) corrects for			

this. Conversely, there is no effect of A_{650} on the A_{260} reading; the multiplication by zero was added to the second formula to keep the formulas consistent.

Expected Results

Control DNA	Typically, if starting with 1 µg of Control DNA as specified on page 5, you should expect the following:		
	Yield: \geq 7 µg of amplified DNA		
	Dye incorporation: ≥175 pmol Alexa Fluor [®] 3 ≥300 pmol Alexa Fluor [®] 5		
	Degree of labeling:	≥0.7 for Alexa Fluor® 3 ≥1.2 for Alexa Fluor® 5	
Note on Signal Intensity	The Alexa Fluor [®] dye-labeled nucleotides and reaction conditions of the BioPrime [®] Total FFPE Genomic Labeling System have been optimized for use on microarrays. Signal intensity and signal/background on microarrays does not correlate directly with dye incorporation or degree of labeling when comparing different fluorescent dyes.		
	Labeling with Alexa labeled nucleotides t intensities and signa equal to labeling wit lower dye incorporat	Fluor [®] 3 and Alexa Fluor [®] 5 dye- ypically yields microarray signal l/background ratios greater than or h other labeled nucleotides, even with tion and/or degree of labeling.	
Saturated Spots	Due to the higher signal intensities associated with Alex Fluor [®] dyes, you may see more saturated spots with you standard scanner settings.		
	The percentage of sa higher, we recomme- tube) setting on your array. If it is still too and rescan. Repeat a	turated spots should be $\leq 10\%$. If it is nd lowering the PMT (photomultiplier scanner by 10% and rescanning the high, lower the setting by another 10% s necessary.	

Troubleshooting

Problem	Cause	Solution
Yield of labeled DNA from both the control reaction and the experimental sample is low	DNA has been lost in the purification step after labeling	Make sure that isopropanol has been added to the Binding Buffer and ethanol has been added to the Wash Buffer, as specified on page vi. Measure the amount of labeled DNA in the control reaction before and after purification. Repeat the labeling and purification procedures, following all steps without modifications.
Yield of labeled DNA from the experimental sample is low, but the control reaction is fine	FFPE sample is degraded	Carefully evaluate the quality of your FFPE sample; some samples may be too degraded for effective labeling
	Starting amount of DNA sample is too low	Increase the amount of starting DNA.
	FFPE sample is not completely digested by Proteinase K	If you are using the PureLink [™] Genomic DNA Mini Kit, we strongly recommend performing an <i>overnight</i> digestion step with PureLink [™] Genomic Digestion Buffer and Proteinase K (see Important note on page 4).
Cannot detect labeled probes	DNA has been lost in the purification step after labeling	Make sure that isopropanol has been added to the Binding Buffer and ethanol has been added to the Wash Buffer, as specified on page vi.
		Measure the amount of labeled DNA in the control reaction before and after purification. Repeat the labeling and purification procedures, following all steps without modifications.
Amount of incorporated labeled nucleotides is low or fluorescence is low	Starting amount of DNA is too low	Increase the amount of starting DNA
	Reaction tubes have been exposed to light	Avoid direct exposure of the reaction tubes to light. Repeat the labeling procedure.
	Fluorescent nucleotides have been exposed to light	Repeat the labeling reaction, being careful to avoid direct exposure to light.
	Inefficient labeling due to improper purification	Follow all the purification steps as described in the procedures.
High background with Agilent scanners	High yields of DNA, a high level of dye incorporation and/or degree of labeling, and/or extended hybridization times	Adjust the PMT settings on the scanner to reduce background as described on page 9

Appendix

Technical Support

Visit the Invitrogen website at <u>www.invitrogen.com</u> for:

- Technical resources, including manuals, vector maps and sequences, application notes, MSDSs, FAQs, formulations, citations, handbooks, etc.
- Complete technical service contact information
- Access to the Invitrogen Online Catalog
- Additional product information and special offers

Contact Us

For more information or technical assistance, call, write, fax, or email. Additional international offices are listed on our website (<u>www.invitrogen.com</u>).

Corporate Headquarters:

5791 Van Allen Way Carlsbad, CA 92008 USA Tel: 1 760 603 7200 Tel (Toll Free): 1 800 955 6288 Fax: 1 760 602 6500 E-mail: <u>tech_support@invitrogen.com</u>

European Headquarters:

Inchinnan Business Park 3 Fountain Drive Paisley PA4 9RF, UK Tel: +44 (0) 141 814 6100 Tech Fax: +44 (0) 141 814 6117 E-mail: <u>eurotech@invitrogen.com</u>

MSDS Requests	MSDSs are available on our website at <u>www.invitrogen.com</u> . On the home page, click on Technical Resources and follow instructions on the page to download the MSDS for your product.	
Certificate of Analysis	The Certificate of Analysis provides detailed quality control information for each product. Certificates of Analysis are available on our website. Go to <u>www.invitrogen.com/support</u> and search for the Certificate of Analysis by product lot number, which is printed on the box.	

Continued on next page

Technical Support, continued

Limited Warranty

Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, please contact our Technical Service Representatives. Invitrogen warrants that all of its products will perform according to the specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. This warranty limits Invitrogen Corporation's liability only to the cost of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order. Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Service Representatives. Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

Additional Products

AdditionalInvitrogen has additional reagents that may be used toProductsprepare labeled probes for hybridization. Ordering
information is provided below.

Product	Quantity	Catalog no.
PureLink [™] Genomic DNA Mini Kit	50 preps 250 preps	K1820-01 K1820-02
E-Gel [®] 1.2% Starter Pak	6 gels and base	G6000-01
Human Cot-1 DNA®-Fluorometric QC	1 mg	15279-101
Human Cot-1 DNA®	500 µg	15279-011
Mouse Cot-1 DNA®	500 µg	18440-016
Yeast tRNA	25 mg 50 mg	15401-011 15401-029

References

- Beheshti, B., Braude, I., Marrano, P., Thorner, P., Zielenska, M., and Squire, J. A. (2003) Chromosomal localization of DNA amplifications in neuroblastoma tumors using cDNA microarray comparative genomic hybridization. *Neoplasia*, 5, 53-62
- Cai, W. W., Mao, J. H., Chow, C. W., Damani, S., Balmain, A., and Bradley, A. (2002) Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. *Nat Biotechnol*, 20, 393-396
- Pollack, J. R., Perou, C. M., Alizadeh, A. A., Eisen, M. B., Pergamenschikov, A., Williams, C. F., Jeffrey, S. S., Botstein, D., and Brown, P. O. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. *Nat Genet*, 23, 41-46
- Pollack, J. R., Sorlie, T., Perou, C. M., Rees, C. A., Jeffrey, S. S., Lonning, P. E., Tibshirani, R., Botstein, D., Borresen-Dale, A. L., and Brown, P. O. (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. *Proc. Natl. Acad. Sci. USA*, 99, 12963–12968
- Snijders, A. M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J., Hamilton, G., Hindle, A. K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer, J., Ylstra, B., Yue, J. P., Gray, J. W., Jain, A. N., Pinkel, D., and Albertson, D. G. (2001) Assembly of microarrays for genome-wide measurement of DNA copy number. *Nat Genet*, 29, 263-264

©2009 Life Technologies Corporation. All rights reserved.

For research use only. Not intended for any animal or human therapeutic or diagnostic use.

Notes:

Notes:

invitrogen

Corporate Headquarters 5791 Van Allen Way Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech_support@invitrogen.com

For country-specific contact information, visit our web site at www.invitrogen.com