Validation & Assay Performance Summary

CellSensor[®] :Myc-*bla* HCT116 Cell Line

Cat. no. K1467

CellSensor[®] Cell-Based Assay Validation Packet

This cell-based assay has been thoroughly tested and validated by Invitrogen and is suitable for immediate use in a screening application. The following information illustrates the high level of assay testing completed and the validation of assay performance under optimized conditions.

Pathway Description

Increased wild-type MYC expression occurs frequently in human cancers. Myc up-regulation occurs as a consequence of activation of one or more signaling pathways that induce MYC expression and function as a regulator of gene transcription. These include MAPK, PI3K and Wnt- β -catenin pathways. The target genes regulated by Myc are involved in the many biological activities attributed to Myc, including growth, transformation, proliferation and angiogenesis.

🙆 invitrogen 🖱

HCT116 is a colon cancer cell line which expresses a mutated form of β -catenin. This form of β -catenin leads to the accumulation of β -catenin and constitutive activation of downstream genes such as MYC.

Cell Line Description

CellSensor[®] Myc-*bla* HCT116 contains a beta-lactamase reporter gene under the control of Myc binding sequences. The construct was transduced into HCT116 cells by lentivirus. This cell line is a clonal population isolated by flow cytometry. It has been validated for cell plating density and DMSO tolerance. The signaling pathway has been validated using RNAi against c-MYC and ICG-001, an inhibitor of the wnt- β -catenin pathway. The expression of the mutated version of β -catenin in HCT116 cells results in the constitutive activation of beta-lactamase in this CellSensor[®] line, which can be knocked down by Myc RNAi and ICG-001.

Validation Summary

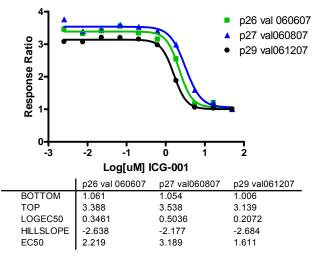
Testing and validation of this assay was evaluated in a 384-well format using LiveBLAzer[™]-FRET B/G Substrate.

1. Primary agonist dose response under optimized conditions (n=3)

Z'-Factor	= 0.66
Response Ratio	= 3.4
Recommended cell no.	= 8000
cells/well	- 8000
Recommended [DMSO]	= 0.5-1%
Recommended compound in	
	= 24 hours

2. Alternate Stimuli

n.a.


- 3. Stealth[™] RNAi Testing See below
- 4. Small molecule inhibitor Testing See below
- 5. Cell culture and maintenance See Cell Culture and Maintenance Section and Table 1

Assay Testing Summary

- 6. Assay performance with variable cell number
- 7. Assay performance with variable substrate loading time
- 8. Assay performance with variable DMSO concentration
- 9. Assay performance with variable compound incubation time

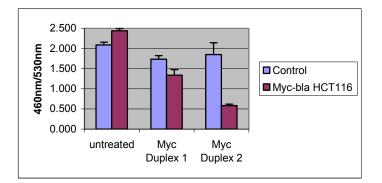

Determination of assay window

Figure 1 — Myc-*bla* HCT-116 response to ICG-001 under optimized conditions

Myc-*bla* HCT116 cells (8000 cells/well) were assayed on three separate days represented by the three curves shown on the graph. Cells were plated the day prior to the assay in a 384-well format and treated with indicated amount of ICG-001 in the presence of 0.1% DMSO in Assay Medium for 24 hours. Cells were then loaded with LiveBLAzerTM-FRET B/G Substrate for 120 minutes. Fluorescence emission values at 460 nm and 530 nm were obtained using a standard fluorescence plate reader and the response ratio was calculated as the 460/530 Emission Ratio of cells treated with 50 μ M ICG-001. The response ratio was plotted for the indicated treatment (n=16 for each data point).

Target validation with RNAi

Figure 2 — Myc-*bla* HCT116 response to treatment with Myc RNAi

Myc-*bla* HCT116 or control cells (10000 cells/well) were plated the day prior to the transfection in a 96-well format in growth medium. The cells were transfected with the indicated RNAi duplexes (20 nM final concentration, Invitrogen, #12936-50) using Lipofectamine™RNAiMax (Invitrogen, #13778-075) according to manufacturer instructions, and incubated for 72 hours with the RNAi. Cells were then loaded with LiveBLAzer™-FRET B/G Substrate for 120 minutes. Emission values at 460 nm and 530 nm were obtained using a standard fluorescence plate reader and the 460/530 Ratios plotted for each treatment (n=4 for each data point).

Cell Culture and Maintenance

Thaw cells in Growth Medium without Blasticidin and culture them in Growth Medium with Blasticidin. Pass or feed cells at least twice a week and maintain them in a 37° C/5% CO₂ incubator. Maintain cells between 10% and 85% confluency. Do not allow cells to reach confluence.

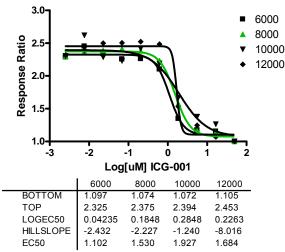
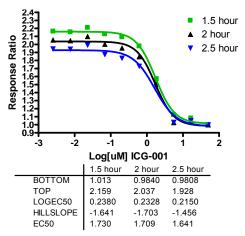

Note: We recommend passing cells for three passages after thawing before using them in the beta-lactamase assay. For more detailed cell growth and maintenance directions, please refer to protocol.

Table 1 – Cell Culture and Maintenance

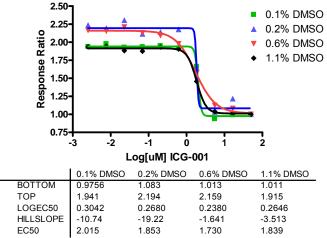
Component	Growth Medium	Assay Medium	Freezing Medium
McCoy's 5A Medium	90%		
OPTI-MEM		90%	
Dialyzed FBS Do Not Substitute!	10%	0.5%	_
NEAA	—	0.1 mM	—
HEPES (pH 7.3)		10 mM	
Sodium Pyruvate		1 mM	
Penicillin (antibiotic)	100 U/ml	100 U/ml	—
Streptomycin (antibiotic)	100 μg/ml	100 μg/ml	
Blasticidin (antibiotic)	5 μg/ml	_	—
Recovery [™] Cell Culture Freezing Medium	_	_	100%

Assay Performance with Variable Cell Number


Figure 3 — ICG-001 inhibition with different plating cell numbers/well

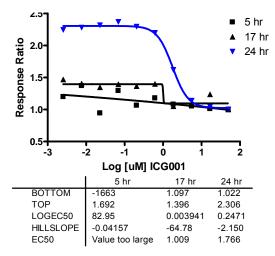
Myc-*bla* HCT116 cells were plated the day prior to the assay at the indicated number of cells/well in a 384-well format in growth medium and treated with indicated amount of ICG-001 in Assay Medium for 24 hours. Cells were then loaded with LiveBLAzerTM-FRET B/G Substrate for 120 minutes. Fluorescence emission values at 460 nm and 530 nm were obtained using a standard fluorescence plate reader and the response ratio was calculated as the 460/530 Emission Ratio of untreated cells divided by the 460/530 Emission Ratio of cells treated with 50 μ M ICG-001. The response ratio was plotted for the indicated treatment (n=8 for each data point).

Assay Performance with Variable Substrate Loading Time


Figure 4 — ICG-001 inhibition with various substrate loading times

Myc-*bla* HCT116 cells were plated the day prior to the assay at 8000 cells/well in a 384-well format in growth medium and treated with indicated amount of ICG-001 in Assay Medium for 24 hours. Cells were then loaded with LiveBLAzerTM-FRET B/G Substrate for 1.5, 2 and 2.5 hours. Fluorescence emission values at 460 nm and 530 nm were obtained using a standard fluorescence plate reader and the response ratio was calculated as the 460/530 Emission Ratio of untreated cells divided by the 460/530 Emission Ratio of cells treated with 50 μ M ICG-001. The response ratio was plotted for the indicated treatment (n=8 for each data point).

Assay Performance with Variable DMSO Concentration


Figure 5 – ICG-001 inhibition with various DMSO concentrations

Myc-*bla* HCT116 cells (8000 cells/well) were plated the day prior to the assay in a 384-well format and treated with indicated amount of ICG-001 in the presence of indicated concentrations of DMSO in Assay Medium for 24 hours. Cells were then loaded with LiveBLAzerTM-FRET B/G Substrate for 120 minutes. Fluorescence emission values at 460 nm and 530 nm were obtained using a standard fluorescence plate reader and the response ratio was calculated as the 460/530 Emission Ratio of untreated cells divided by the 460/530 Emission Ratio of cells treated with 50 μ M ICG-001. The response ratio was plotted for the indicated treatment (n=8 for each data point).

Compound Incubation Time

Figure 6 – Compound incubation time

Myc-*bla* HCT116 cells were plated at 8000 cells/well in a 384well format in growth medium and treated with indicated amount of ICG-001 in Assay Medium for 5, 17 and 24 hours. Cells were then loaded with LiveBLAzerTM-FRET B/G Substrate for 2 hours. Fluorescence emission values at 460 nm and 530 nm were obtained using a standard fluorescence plate reader and the response ratio was calculated as the 460/530 Emission Ratio of untreated cells divided by the 460/530 Emission Ratio of cells treated with 50 μ M ICG-001. The response ratio was plotted for the indicated treatment (n=8 for each data point).

Tel: 800 955 6288 x40266 • E-mail: drugdiscoverytech@invitrogen.com • www.invitrogen.com/drugdiscovery 17Dec2008